osgEarth 的 121 个案例详解

osgE	arth 的 121 个案例详解	osgEarth 的 121 个案例详解1					
1.	aeqd.earth	4					
2.	annotation.earth	5					
3.	annotation_dateline.earth	6					
4.	annotation_dateline_projected.earth	8					
5.	annotation_flat.earth	8					
6.	arcgisonline.earth	9					
7.	bing.earth	.10					
8.	boston.earth	.11					
9.	boston_buildings.earth	.12					
10.	boston_projected.earth	13					
11.	boston_tfs.earth	.14					
12.	boston-gpu.earth	15					
13.	bumpmap.earth	16					
14.	clouds.earth	.17					
15.	colorramp.earth	.18					
16.	contourmap.earth	.19					
17.	datum_override.earth	20					
18.	day_night_mp.earth	21					
19.	day_night_rex.earth	21					
20.	detail_texture.earth	21					
21.	errors.earth	22					
22.	fade_elevation.earth	22					
23.	feature_clip_plane.earth	23					
24.	feature_country_boundaries.earth	.24					
25.	feature_custom_filters.earth	.25					
26.	feature_draped_lines.earth	.26					
27.	feature_draped_polygons.earth	.27					
28.	feature_elevation.earth	.28					
29.	feature_extrude.earth	.29					
30.	feature_geom.earth	.30					
31.	feature_gpx.earth	.31					
32.	feature_inline_geometry.earth	.32					
33.	feature_labels.earth	.33					
34.	feature_labels_script.earth	35					
35.	feature_levels_and_selectors.earth	35					
36.	feature_model_scatter.earth	.36					
37.	feature_models.earth	.37					
38.	feature_occlusion_culling.earth	38					

39.	feature_offset_polygons.earth	.38
40.	feature_overlay.earth	.39
41.	feature_poles.earth	.40
42.	feature_population_cylinders.earth	.40
43.	feature_raster.earth	.41
44.	feature_rasterize.earth	.41
45.	feature_rasterize_2.earth	.42
46.	feature_scripted_styling.earth	.43
47.	feature_scripted_styling_2.earth	.43
48.	feature_scripted_styling_3.earth	.43
49.	feature_style_selector.earth	.44
50.	feature_tfs.earth	.45
51.	feature_tfs_scripting.earth	.46
52.	feature_wfs.earth	.47
53.	fractal_elevation.earth	.47
54.	gdal_multiple_files.earth	.47
55.	gdal_tiff.earth	.48
56.	geomshader.earth	.49
57.	glsl.earth	.50
58.	glsl_filter.earth	.51
59.	graticules.earth	.52
60.	hires-inset.earth	.53
61.	intersect_filter.earth	.54
62.	land_cover_mixed.earth	.55
63.	layer_opacity.earth	.55
64.	ldb.earth	.56
65.	mapbox.earth	.56
66.	mask.earth	.57
67.	mb_tiles.earth	.58
68.	mercator_to_plate_carre.earth	.59
69.	mgrs_graticule.earth	.60
70.	min_max_level.earth	.60
71.	min_max_range.earth	.61
72.	min_max_range_rex.earth	.62
73.	min_max_resolutions.earth	.62
74.	multiple_heightfields.earth	.64
75.	night.earth	.65
76.	nodata.earth	.65
77.	noise.earth	.68
78.	normalmap.earth	.68
79.	ocean.earth	.69
80.	ocean_no_elevation.earth	.69
81.	openstreetmap.earth	.69
82.	openstreetmap_buildings.earth	.70

83.	openstreetmap_flat.earth	70
84.	openstreetmap_full.earth	70
85.	openweathermap_clouds.earth	71
86.	openweathermap_precipitation.earth	71
87.	openweathermap_pressure.earth	71
88.	photosphere1.earth	71
89.	photosphere2.earth	72
90.	readymap.earth	73
91.	readymap_flat.earth	73
92.	readymap_include.earth	74
93.	readymap_template.earth	74
94.	readymap-elevation-only.earth	74
95.	readymap-osm.earth	75
96.	readymap-priority.earth	75
97.	readymap-rex.earth	75
98.	roads.earth	
99.	roads-flattened.earth	
100.	roads-test.earth	
101.	scene_clamping.earth	
102.	silverlining.earth	
103.	simple_model.earth	
104.	skyview1.earth	79
105.	skyview2.earth	80
106.	splat.earth	81
107.	splat-blended-with-imagery.earth	81
108.	splat-with-mask-layer.earth	81
109.	splat-with-multiple-zones.earth	82
110.	splat-with-rasterized-land-cover.earth	82
111.	stamen_toner.earth	82
112.	stamen_watercolor.earth	82
113.	state_plane.earth	82
114.	tess_screen_space.earth	82
115.	tess-coastlines.earth	82
116.	tess-terrain.earth	83
117.	triton.earth	83
118.	triton_drop_shader.earth	83
119.	utm.earth	83
120.	utm_graticule.earth	83
121.	vertical_datum.earth	83
122.	wms_nexrad.earth	
123.	wms-t_nexrad_animated.earth	
124.	编辑问题总结	错误!未定义书签。

关于 osgEarth 案例详解

1) 软件环境

osgEarth: 官方代码库 2017.11.09 最新代码地址: www.github.com/gwaldron/osgearth osgEarth 编辑器: SXEarth2.8 及以上,下载地址: www.sxsim.com

2) 硬件环境

本文编写和案例测试使用的硬件环境: CPU: i5 四核,显卡: GTX660,内存: 8GB。 (推荐使用英伟达显卡, intel 显卡,会出现三维场景中文字显示不全的问题)

3) 文档说明

本文基于 osgEarth 2017.11.09 官方代码库源代码 tests 目录下案例编写,不一定完全适用于其他版本,本文包含在 SXEarth2.8+安装包中,安装后位于 doc 目录下。

本文还不完善,会随着 SXEarth 升级,逐步完善。

4) 问题反馈

遇到任何问题,欢迎读者反馈,邮箱 674200401@qq.com

1. aeqd.earth

1) 案例概述

等距方位投影案例。

2) 编辑测试

点击左侧场景栏的"场景"项,在右侧的属性面板可以看到投影(Proj.4 地图投影描述): +proj=aeqd +lat_0=90 +lon_0=0 +x_0=0 +y_0=0 +ellps=WGS84 +datum=WGS84 +units=m +no_defs;

3) 场景属性

场景面板的"场景"项包含了描述地球构建的基础信息,修改其属性,需要保存场景, 系统会自动重新打开该项目,以刷新场景基础坐标系统等信息。

4) 技巧

拖拽 earth 文件到编辑器界面,可实现打开。

全屏浏览: 在"窗口"菜单, 点"全屏", 快捷键"Ctrl+f"。

退出全屏:快捷键"Esc"。

5) Proj.4 库

Proj.4 是开源 GIS 最著名的地图投影库,支持各种地图投影。

关于地图投影参数,请参考: <u>https://github.com/OSGeo/proj.4/wiki/GenParms</u>

国内使用的北京 54 和西安 80 坐标系, osgEarth 可以通过修改"场景"的投影信息实现 支持。

地球坐标系与投影方式的理解(关于北京 54,西安 80,WGS84;高斯,兰勃特,墨卡托投影) 参考: <u>http://www.cnblogs.com/xieqianli/p/4186281.html</u>

2. annotation.earth

1) 案例概述

标记显示案例,标记包括文字、模型、图标、地面帖图等。

2) 样式编辑

点击标记,右侧属性面板,可修改名称、颜色、线宽、边框、填充等。

3) 复制标记

按住键盘 Ctrl 键,拖拽标记,实现复制标记。

4) 移动标记

按住键盘 Alt 键,拖拽标记,实现移动标记。

3. annotation_dateline.earth

1) 案例概述

在地球上,标记线跨越国际日期变更线,是同一条线,不需要切断。

(在投影地图,会自动切断显示,参见 annotation_dateline_projected.earth)

2) 编辑测试

点击选中标记线,右侧属性面板编辑线宽、颜色、光照,右键"样式",选择"编辑" 菜单,打开"编辑样式"对话框,可以添加其他样式。

3) 编辑样式对话框

4) 简化窗口

在"窗口"菜单,点击"场景面板"关闭左侧面板。点击"属性面板",关闭右侧面板。 在窗口的右上角,点击"选项"旁边向上的箭头,关闭工具栏。

4. annotation_dateline_projected.earth

1) 案例概述

在投影地图上,标记线跨越国际日期变更线,标记线会自动切开显示(否则会出现一条 跨越东西半球的连接线)。

5. annotation_flat.earth

1) 案例概述

投影地图上各种标记的显示;

2) 编辑测试

点击,选中标记,在属性面板修改文字、标记颜色、标记位置;

6. arcgisonline.earth

1) 案例概述

ArcGIS 在线地图案例。

案例包含影像、道路、标签三个在线图层,道路层和标签层默认关闭,需要通过图层属性,打开"启用"。

2) 编辑测试

在左侧场景面板,选中"arcgis-transportation"图层,在右侧属性面板,"启用"属性 改为 true,右键纵向拖拽地球,放大显示如下图。

3) 开启"夜晚"模式

在左侧场景面板,选中"arcgis-world-imagery"图层,在右侧属性面板,打开属性"夜晚",显示如下:

7. bing.earth

1) 案例概述

微软 Bing 地图案例,使用了 bing 插件。

Bing 插件需要配置许可,通过以下网址获取 http://www.bing.com/developers/,笔者没有进一步获取许可测试。在"在线地图"菜单,可以添加 bing 在线地图。

2) 编辑测试

通过"在线地图"菜单,点击添加"bing 地图"、"bing 影像"、"bing 混合影像"。 3) 使用技巧

添加多个在线图层,浏览时会同时下载,删除被覆盖的在线图层,可以大幅提高加载速度。以下是只添加 bing 混合影像效果:

8. boston.earth

1) 案例概述

波士顿城市建筑、路灯、公园、道路 shp 矢量生成三维模型案例。 案例以 readymap 在线影像和 readymap 在线高程数据为基础底图。

2) 编辑测试

左侧场景面板,双击"位置列表"的"Boston Overview"项,进入波士顿城,国内是白 天,美国波士顿是夜间,需要调节时间。在"环境菜单",调节"日期/时间"的小时项(或 关闭"环境菜单"的"大气"选项)。

3) 道路添加贴图

在左侧场景面板,选中"Streets"层,在右侧属性面板,右键单击"样式",选择"编辑样式"菜单,弹出"编辑样式"对话框,在线符号组,展开"属性表",选中"描边-图像"为 true(选中的属性,提交后会添加到图层属性),修改"描边-图像"值为 images/road_two.jpg, 点"提交"按钮,场景中的道路贴上了纹理,效果如下图。

4) 建筑配置

参见 boston_buildings.earth 案例。

9. boston_buildings.earth

1) 案例概述

波士顿城市建筑矢量生成模型案例。

案例以 readymap 影像为基础底图。

2) 编辑测试

- 在左侧"场景面板",在"位置列表"双击其中任意项,进入波士顿城。显示如下图。
- 3) 建筑配置
 - a) 矢量层属性: 在左侧"场景面板",选中"buildings"矢量层,在右侧"属性 面板"显示属性信息。
 - b) 矢量文件: "属性面板"的"要素集"组,可以看到使用的矢量文件"路径" 为: "../data/boston_buildings_utm19.shp",配置了一个 utm 投影的建筑矢量 文件。
 - c) 布局的作用:用于配置矢量的显示范围,切块大小。实现矢量的异步分块加载, 提高加载效率,如果不配置布局,整个城市模型一次性计算,不能异步,会卡 住主场景,不能操作,所以建议尽可能使用布局。
 - d) 布局参数: "buildings" 图层的属性 "布局"组, "切片大小因子"为 45, "最 大显示范围"为 20000.0, 那么切片大小是多少呢?
 - i. 切块大小 = 最大显示范围/切片大小因子,20000.0/45,切片大小 444.4
 米。
 - ii. 在"布局"项,右键单击,弹出的菜单选择"切片大小",配置为444.4, 这里等同于切块大小因子 45。需要注意的是切片大小,指的是切片的半 径。
 - iii. 层级:布局可以定义多个层级,右键单击"层级"项,有"样式"、"最

小范围"、"最大范围",配合样式,可以定义不同层级,不同的显示样式,参见案例 feature_levels_and_selectors.earth。

- e) 样式: "样式"包含三个"子样式",分别是"buildings"、"building-wall"
 和 "building-rooftop",配置了建筑的高度、侧面纹理、顶面纹理等。
- f) 皮肤-库:建筑的侧面和顶面纹理,引用了"皮肤-库",也就是纹理库配置文件,"库"属性的"路径"为"../data/resources/textures_us/catalog.xml"。编辑该纹理 xml 库及对应的图片库,可以创建不同的建筑效果。

10. boston_projected.earth

1) 案例概述

波士顿城市模型 UTM 投影坐标系案例。

2) 编辑测试

案例使用建筑、路灯、公园、道路矢量数据,通过配置矢量样式生成三维模型,以 UTM 为基础坐标系,在左侧场景面板,选择"场景"项,在右侧属性面板,可以看到 UTM 投影 属性。

3) 建筑配置

参见 boston_buildings.earth 案例。

11. boston_tfs.earth

1) 案例概述

波士顿城市 tfs 矢量瓦片建筑案例。

2) 编辑测试

在左侧场景面板,双击"位置列表"的"Boston Overview"项(相机飞到波士顿城市上空),选中"矢量层"的"buildings"项,在右侧属性面板。修改建筑填充色、描边色、建筑高度,效果如下图。

3) 反复读取压缩包文件问题

矢量"buildings"层,属性"路径"为"../data/tfs_boston.zip/layer/tfs.xml",可见tfs 文件位于 zip 压缩包内,当多次修改"buildings"层属性,会导致tfs.xml 文件读取失败,建筑无法显示。解决方法: 解压 tfs_boston.zip 压缩包,修改"路径"为解压的tfs.xml 文件路径。

12. boston-gpu.earth

1) 案例概述

波士顿城市建筑生成案例,矢量的贴地方式为"terrain-gpu"。

2) 道路添加贴图

参照案例8,道路添加贴图,修改道路颜色及透明度,效果如图

3) 建筑配置

参见 boston_buildings.earth 案例。

13. bumpmap.earth

1) 案例概述

凹凸贴图案例。

2) 编辑测试

放大地球到地面(双击地面),在左侧场景栏,选中"扩展"组的"凹凸贴图"项,为 了让效果更明显,设置属性"强度"值为 100.0,下如图左侧有凹凸贴图效果,右侧没有凹 凸贴图效果。

14. clouds.earth

1) 案例概述

云图显示案例。

添加的云图为 cloud_combined_2048.jpg,图像属性配置了 GLSL 着色器代码使云图底色透明。

2) 编辑测试

左侧场景面板,选中 clouds 图层,在右侧属性面板,右键"着色器"项,选择"编辑" 菜单,打开编辑窗口,可以修改代码,该窗口,支持代码高亮,编辑完成后,关闭编辑窗口, 更新显示。

osgEarth 编辑器 SXEarth www.sxsim.com

15. colorramp.earth

1) 案例概述

高程配色图像案例。

使用了 colorramp 图像层驱动,加载高程数据源,按高度配色显示。

2) 编辑测试

选中左侧场景面板的 color ramp 图层,属性"高程配色"值为 "..\data\colorramps\elevation.clr",打开 elevation.clr 文件,包含了一个配色序列,结构为: "海拔红绿蓝透明度",一个海拔高度对应一个配色的列表,修改该文件,可以自定义高程配色方案。

elevation.clr 文件内容: 0 46 154 88 255 1800 251 255 128 255 2800 224 108 31 255 3500 200 55 55 255 4000 215 244 244 255

16. contourmap.earth

1) 案例概述

高程着色图案例。

使用了高程着色图扩展。

2) 编辑测试

删除"高程着色图": 在左侧场景面板,右键点击"高程着色图",选择删除菜单。 添加"高程着色图": 在场景面板,右键"场景"项,选择扩展菜单,在弹出的添加扩 展层对话框, "驱动"选择"高程着色图",点确定,实现添加。

3) 技巧

高程着色图"扩展,需要配合 rex 地形驱动,默认是 mp 地形驱动,场景面板的"场景" 项,包含地形驱动属性,另外结合 readymap 高程使用(该高程的切片较大,为 257),显示效果比较好。

4) 地形驱动切换

在左侧"场景面板",选择"场景"项,在右侧"属性面板",点击"驱动"值"rex", 在下拉列表中选择"mp"。保存场景,系统会自动重启场景,实现驱动切换。

17. datum_override.earth

1) 案例概述

用 NAD27 基准面代替默认的 WGS84 基准面。

2) 编辑测试

选中左侧场景栏的"场景"项,坐标系为: +proj=longlat +ellps=clrk66 +datum=NAD27 +no_defs

3) 场景项属性编辑

编辑属性面板的场景项属性,场景不立即刷新,需要保存 earth 文件,系统会重新启动, 刷新场景。

18. day_night_mp.earth

1) 案例概述

使用 mp 地形驱动时测试夜景图像案例。

2) 案例要点

开启夜景图像层属性"颜色过滤"组的"夜晚"模式。

19. day_night_rex.earth

1) 案例概述

使用 rex 地形驱动时测试夜景图像案例。

2) 案例要点

开启夜景图像层图像层属性"颜色过滤"组的"夜晚"模式。

20. detail_texture.earth

1) 案例概述

细节纹理案例。(相机走到地面时,影像图通常不够清晰,而采用细节图代替的效果)

2) 编辑测试

选中左侧场景栏的"细节纹理"项,细节级别,可以调节细节纹理密度,"最大范围" 调节细节纹理的显示范围,"衰减"调节细节纹理的与图像层的过渡范围。

21. errors.earth

1) 案例概述

错误提示案例,当资源配置无效路径、或者使用无效插件时,控制台窗口打印出错提示。

2) 编辑测试

界面目前没有提示出错信息窗口,添加数据层时,插件配置通过下拉列表选择,资源路 径通过文件对话框选择,选择错误插件,数据无法准确添加。

22. fade_elevation.earth

1) 案例概述

地形透明案例。指定最小高度,透明过渡范围,可以平滑透明地形。

2) 编辑测试

在左侧场景栏,选中"地形着色器"第二项,右键属性"代码",编辑代码, fade 函数 修改如下:也就是替换原 min_elevation 为 0.0, fade_distance 为 100.0, 效果如下图。

void fade(inout vec4 color)

```
{
color.a = 1.0 - clamp((0.0 - elevation)/100.0, 0.0, 1.0);
}
注: glsl 代码 x.0 不可简写为 x, 两者是不同的数据类型, 不可以混用
```


23. feature_clip_plane.earth

1) 案例概述

渲染矢量数据,开启了深度测试和水平剪辑,可以减少矢量贴地引起的闪烁。

2) 编辑测试

选中边界层,在属性面板,关闭"渲染-深度测试"项,可见地球背面的矢量显示相对较多。

3) 裁剪优化

osgEarth_viewer 案例打开 feature_clip_plane.earth 案例,地球背部的矢量会显示。晟兴地球开启了 AutoClipPlaneCullCallback,自动裁剪优化场景,即使关闭"渲染-深度测试"项,地球背部矢量不显示。

4) 添加布局

在矢量 "boundaries" 层属性第一行,右键单击,在弹出的菜单中选择 "布局",将 "布局" 添加到矢量图层属性。

在"布局"项右键单击,在弹出的菜单中选择添加"切片大小"和"层级"。

在"层级"项右键单击,选择"样式",样式名称需要和子样式保持一致,这里为"states", 添加矢量层"最小范围"和"最大范围"。显示结果如下图。

5) 技巧

修改矢量属性时,修改每个值,都会重构矢量,实现显示的刷新。布局属性可以实现矢量的异步 PLOD 加载(矢量刷新过程不卡界面),方便修改复杂的矢量样式,推荐使用。

6) osgEarth_viewer 打开显示效果

24. feature_country_boundaries.earth

1) 案例概述

矢量加载案例。要素资源列表加载矢量 world.shp 数据,数据模型层显示矢量,引用了 要素资源列表的 world-data 数据。

2) 编辑测试

配置 world_boundaries 层的开启属性,颜色属性,编辑无异常。

25. feature_custom_filters.earth

1) 案例概述

矢量属性过滤器案例。

2) 编辑测试

属性过滤: 左侧场景面板,选中矢量层 cities,在右侧属性面板,过滤器组,包含了改变属性过滤,修改 cntry_name 属性为 osgEarthLand,界面所有图标,改为 osgEarthLand。feature_labels_script.earth 案例,采用脚本方式,可以实现同样的效果。

优先级:选中矢量层 cities,属性面板,关闭"文字-清理"项,会显示所有标签,开启 后,自动清理重叠的标签,显示优先级高的图标,"文字-优先级"属性配置标签显示优先 级。

26. feature_draped_lines.earth

1) 案例概述

线矢量使用投影纹理方式贴地。

2) 编辑测试

在左侧场景面板,选中数据模型层的 world_boundaries 项,在右侧属性面板,"高度-贴合"方式是 terrain-drape(投影纹理方式贴地)。

27. feature_draped_polygons.earth

1) 案例概述

面以人口数量属性分类,并配置了不同的显示样式。

2) 编辑测试

选中"Countries"图层,右侧属性面板,样式集组配置了 5 种选择器和对应 p1、p2、 p3、p4,p5 五种样式,选择器需要配置对应的样式名称,实现两者一一对应关系。

3) 添加布局

布局属性,可以对矢量分块异步显示,提高编辑效率。

添加布局步骤:选中"Countries"图层,在右侧"属性面板",右键单击第一行,在菜 单中选择"布局","布局"属性添加到了图层属性中。

右键单击"布局"项,在弹出的菜单中选择添加"切片大小因子"和"最大范围"。配置最大范围为: 6000000.0,切片大小因子为: 5.0

4) 添加选择器

选中 "Countries" 图层, 在右侧 "属性面板", 右键 "样式集", 选择 "添加选择器", 右键单击新加的 "选择器", 选择菜单 "样式"和 "查询", 设置 "样式" 值为 p6, "查询" 值为 POP_CNTRY > 558833000。修改 p5 筛选器的表达式值为 POP_CNTRY > 258833000 and POP_CNTRY <= 558833000。

5) 添加样式

右键点击"样式集",选择"添加样式"菜单,样式名称设置为 p6,与新加的选择器对应,右键选择"高度-技术",删除。"高度-贴合"切换为"terrain-drape",右键单击"样式"选择"编辑样式"菜单,在弹出的"编辑样式"对话框,选择多边形符号组的"填充"选项,配置颜色为 0025580,点"提交"按钮。

6) 提示

选中 "Countries" 图层, 右侧属性面板, 右键单击 "选择器", 菜单出现的 "类"和 "样 式" osgEarth 系统作为同一属性解析, 只需要配置其一。

28. feature_elevation.earth

1) 案例概述

地面压平案例。

案例使用了 feature_elevation 高程驱动,添加矢量 flatten_mt_rainier.shp,以该矢量的 ELEVATION 属性为高度,压平地面。同时配置了启用的最小最大层级。

2) 编辑测试

在"天气环境"菜单,修改"仿真时间"的"小时"项为4点。在左侧场景面板,双击 flatten 高程层,相机飞到高程压平区,等待 readymap 地形加载完成,效果如下图。

29. feature_extrude.earth

1) 案例概述

矢量挤出案例。

矢量文件 dcbuildings.shp,样式配置了"挤出-高度",矢量面产生立体拉升的效果。

2) 编辑测试

关闭大气:在"天气环境菜单",关闭"大气"选项。

飞到案例区: 左侧场景面板,双击"位置列表"的"Zoom to Buildings"项。

添加谷歌地球影像:删除默认的"ReadyMap.org-Imagery"图像层,在"在线地图"菜单,点击添加"谷歌地球影像(无位移)"。

编辑建筑属性:选择"buildings"图层,右侧属性面板,修改挤出高度为 Math.random()*30.0+3.0、修改描边及填充颜色及透明度属性,如下图。

30. feature_geom.earth

1) 案例概述

矢量几何体显示案例。

2) 编辑测试

在天气环境菜单,修改仿真时间为0时,鼠标拖拽旋转地球,到美国所在区域。选中场 景面板的 states 数据模型层,修改属性颜色及光照,如下图。

31. feature_gpx.earth

1) 案例概述

GPS 输出的 gpx 文件加载案例。

2) 编辑测试

"天气环境"菜单,修改仿真时间为0时,在左侧"场景面板",双击"Fells Loop"位置,视点飞到案例显示区。在线地图菜单,点击"谷歌地球影像",添加谷歌地球影像,如下图。

32. feature_inline_geometry.earth

1) 案例概述

矢量不同插值类型,在地球上对比显示案例。

2) 编辑测试

在左侧场景面板,选中"great_circle"层,在右侧属性面板"goe 插值"为"great_circle"; 场景面板的"rhumb_line"层, "goe 插值"为"rhumb_line";

rhumb_line:两点之间,保持经纬度方位不变。

great_circl: 两点之间,取两个点之间最短的大圆弧连接(两点与地心三点构成的面,与地面的交线)。

在左侧场景面板,选中 great_circle 图层,在右侧属性面板,修改 "geo 插值"属性,切换 rhumb_line 和 great_circle,可以看到同一图形的不同插值结果。

33. feature_labels.earth

1) 案例概述

矢量标签显示案例。

2) 描述

要素源列表配置了矢量文件,数据模型层引用了要素源的矢量文件,并配置了文字及图标样式。案例对矢量的标签进行了筛选,筛选条件是 scalerank < 5, scalerank 是 cities.shp 文件包含的一项属性。

scalerank <5

scalerank <1

34. feature_labels_script.earth

1) 案例概述

用 js 脚本修改矢量标签属性案例。

2) 编辑测试

addSomeExcitement 函数,定义了新名称='***'+ 原名称 +'!!!',显示出来的名字增加了 前缀***和后缀!!!。

35. feature_levels_and_selectors.earth

1) 案例概述

层级和选择器结合使用案例,目标是实现同一矢量,不同显示级别,对应不同样式的配置。

2) 编辑测试

删除 levels 后,修改标签颜色,如下图。

osgEarth 编辑器 SXEarth www.sxsim.com

36. feature_model_scatter.earth

- 1) 案例概述
- 面矢量配置散布模型样式案例。
- 2) 编辑测试

37. feature_models.earth

- 1) 案例概述
- 矢量点 shp 文件,配置模型样式。
- 2) 编辑测试

38. feature_occlusion_culling.earth

1) 案例概述

矢量标签的遮挡选择案例。

2) 编辑测试

遮挡选择,缩小地球,过于密集的标签会自动隐藏。

39. feature_offset_polygons.earth

1) 案例概述

使用 GLSL 着色器代码位移矢量,以防止矢量贴地与地形发生闪烁问题。

40. feature_overlay.earth

1) 案例概述

在指定海拔高度,绘制矢量案例。

2) 编辑测试

在左侧"场景面板",选中"world_boundaries"矢量层,在右侧"属性面板",修改 "高度-位移"值为 800000.0,显示效果如下图。

41. feature_poles.earth

1) 案例概述

在南北两极附近绘制矢量案例。

2) 编辑测试

42. feature_population_cylinders.earth

1) 案例概述

使用 JavaScript 脚本绘制柱状图案例。

2) 编辑柱状图高度

在左侧"场景面板",选中"City Population"项,在右侧"属性面板",右键单击"代码段",在弹出的菜单中选择"编辑"菜单,打开代码"编辑窗口",其中表示柱状图高度的代码: feature.properties.height=radius*1.5; 修改为: feature.properties.height=radius*5.5; 关闭窗口,柱状图刷新,高度增加。

3) 编辑文字显示高度

在左侧"场景面板",选中"City Labels"项,在右侧"属性面板",右键单击"样式" 项,在弹出的菜单中选择"编辑样式",弹出"编辑样式"对话框,展开"高度符号"的"属 性表"组,选中"高度-位移",并设置"高度-位移"为(3.0-feature.properties.scalerank)* 75000*6.0,点"提交"按钮,场景文字提高到柱状图上部显示。

43. feature_raster.earth

1) 案例概述

影像层转为矢量层案例。 当前版本,此案例无法正常显示。

44. feature_rasterize.earth

1) 案例概述

矢量栅格化为图像层案例 1, 使用了"agglite"矢量栅格化驱动。

2) 编辑测试

选中图像层 world_boundaries,编辑属性描边颜色和填充颜色,效果如下图。

45. feature_rasterize_2.earth

1) 案例概述

矢量栅格化为图像层案例 2。

2) 编辑测试

矢量栅格化, roads 图层属性, 线宽为 4km 和最小像素数 2;

46. feature_scripted_styling.earth

1) 案例概述

用 JavaScrip 脚本方式,指定矢量样式。

2) 编辑测试

左侧场景面板,选中 countries 矢量层,在右侧属性面板,右键"代码段"项,选择编辑,弹出代码编辑对话框,修改样式代码,关闭对话框,场景刷新。

47. feature_scripted_styling_2.earth

1) 案例概述

用 JavaScript 脚本方式,指定矢量样式案例 2。

2) 编辑测试

本例使用脚本替代选择器,实现案例 feature_draped_polygons.earth 的效果(按照人口数据,对面矢量配置不同颜色)。在左侧场景面板,选中 countries 矢量层,在右侧属性面板,右键"代码段"项,选择编辑,弹出代码编辑对话框,getStyleClass 函数返回了样式类别。

48. feature_scripted_styling_3.earth

1) 案例概述

用 JavaScript 脚本方式,指定矢量样式案例 3,在上一案例基础上,用脚本替代选择器。 本案例是笔者增加的案例。

2) 编辑测试

在场景面板,选中 countries 图层,在属性面板,右键单击"代码段",选择编辑菜单, 弹出代码编辑对话框,与上一个相比,getStyleClass 函数根据人口数量,返回不同的样式, 从而省略了样式配置。

49. feature_style_selector.earth

1) 案例概述

矢量样式选择器案例

2) 编辑测试

在场景面板,选中 countries 图层,在属性面板,右键单击"代码段",选择编辑菜单, 弹出代码编辑对话框,类似 feature_scripted_styling_2.earth 案例,getStyleClass 函数返回了 样式类别,增加两种返回条件,国别名称首字母,如果是A,无样式,如果是C,矢量拉起 250000米,中国和加拿大首字母C,矢量被拉起了。如下代码:

```
if ( feature.properties.cntry_name.charAt(0) === 'A' )
return null;
if ( feature.properties.cntry_name.charAt(0) == 'C' )
return '{ fill: #ffc838; stroke: #8f8838; extrusion-height: 250000; }';
```


50. feature_tfs.earth

1) 案例概述

在线 tfs 矢量显示案例。

2) 编辑测试

飞到案例区:在左侧"场景面板",双击"位置列表"的"Mexico Buildings"项。

修改样式: 在左侧"场景面板",选中"buildings"矢量层,修改描边及填充颜色和透 明度,如下图。

51. feature_tfs_scripting.earth

1) 案例概述

读取在线 tfs 矢量数据,并配置了脚本样式。

2) 编辑测试

飞到案例区:在左侧"场景面板",双击"位置列表"的"Mexico Buildings"项。

编辑脚本: 在左侧"场景面板",选中"buildings"矢量层,在右侧属性面板,右键单击"代码段",选择编辑,弹出代码编辑窗口, selectStyle 函数,返回了每个建筑对应的随机样式,b1、b2、b3。修改代码后,关闭窗口,显示会刷新。

修改样式:在属性面板,修改描边及填充颜色和透明度,如下图。

52. feature_wfs.earth

1) 案例概述

wfs 矢量路径读取案例(因使用的路径失效,无法读取)。 "http://demo.opengeo.org/geoserver/wfs?SERVICE=WFS&VERSION=1.0.0&REQUEST=GetCa pabilities"

53. fractal_elevation.earth

1) 案例概述

细节高程案例。

2) 编辑测试

54. gdal_multiple_files.earth

1) 案例概述

一个图层,读取文件夹下所有高程 DEM 文件。

2) 编辑测试

在左侧的"场景面板",选中高程层的"地形"项,在右侧的"属性面板","路径"属性使用了目录..\data\terrain,实现了一个 gdal 图层读取多个文件。

关闭 "world" 图层, 右键 "场景"项, 添加扩展, 选择 "高程着色图", 放大地球, 可以看到彩色部分是读取的高程文件所在区域。

55. gdal_tiff.earth

1) 案例概述

用 gdal 驱动读取 tif 格式的影像数据。

56. geomshader.earth

1) 案例概述

几何着色, 实现地形切片自动旋转效果。

2) 编辑测试

选中场景面板的"地形着色器"项,在属性面板,右键"代码",选择编辑菜单,弹出代码编辑对话框,编辑代码,关闭该对话框,更新显示。

57. glsl.earth

1) 案例概述

图像层通过 GLSL 着色器实现颜色反转效果。

2) 编辑测试

选中场景面板的"world-tiff"图层,在属性面板,右键"着色器",选择编辑菜单,弹 出编辑对话框,颜色反转代码 color.rgb = 1.0-color.rgb;通过这个例子,编辑图像层着色器代 码,可以实现图层颜色灵活调整。

58. glsl_filter.earth

1) 案例概述

用 glsl 代码,调整图层颜色;

2) 编辑测试

在场景面板,选择 readymap_imagery 图像层,在右侧属性面板,GLSL 着色器属性,右键点击代码段,选择编辑菜单,打开代码编辑对话框,color.rgb=pow(color.rgb,1.0/vec3(1.3));这行代码实现了矫正灰度系数算法。(用 glsl 代码,可以实现亮度/对比度、色相/饱和度/明度等颜色过滤,为了方便起见,图像层的颜色过滤属性里面已经包含了这些调整实现,只需要调整数值即可。)

59. graticules.earth

1) 案例概述

多种网格线绘制案例。

2) 编辑测试

默认开启的 MGRS 网格,在左侧场景面板,关闭"mgrs 经纬网",开启"geodetic 经纬 网",其中较粗的黄色线条有:赤道线、本初子午线、南北回归线、南北极圈线。

3) 属性配置

选中"geodetic 经纬网"图层,在右侧的"属性面板",可以配置线"颜色"、"标签 颜色"、"网格数"、"分辨率"等,其中"分辨率"表示在不同层级下,对应不同的网格 分辨率,默认是"1052.51.00.50.250.1250.06250.3125",

4) 添加属性

右键单击第一行属性,可以添加"线宽"、"透明度"、"文字大小"等属性。

60. hires-inset.earth

1) 案例概述

添加全球低精度影像,局部增加高精度影像案例。

2) 编辑测试

案例中,先添加了全球基础影像 world.tif, 然后添加了局部高精度影像 boston-inset-wgs84.tif 和 nyc-inset-wgs84.tif。

提示:添加图像、高程和矢量数据时,应注意图层顺序,防止低精度覆盖高精度数据。

61. intersect_filter.earth

1) 案例概述

用相交过滤器,剪裁输入矢量到指定区域(注意,案例使用的 ne_cities.shp 文件,osgEarth 在 data 目录下没有提供)。

2) 编辑测试

双击左侧场景栏的"模型"层,相机飞到模型对应的区域,选中"cities"层,在属性面板,配置了过滤器,使用了 france.shp 过滤全球 cityes.shp 显示, "包含"属性,开启和关闭,如下两图所示。

"包含"属性设置为 true:

"包含"属性设置为 false:

62. land_cover_mixed.earth

1) 案例概述

多层覆盖图混合案例。

2) 编辑测试

案例中配置的三个数据, osgEarth 的 data 目录未提供, 笔者暂时没有测试。

63. layer_opacity.earth

1) 案例概述

配置图像层透明度案例。

2) 编辑测试

双击左侧场景栏的"boston_inset"层,右侧属性栏,可见"透明度"属性为 0.3,调节 此数值,可以观察效果。

64. ldb.earth

1) 案例概述

logrithmic 深度缓冲案例。

2) 编辑测试

65. mapbox.earth

1) 案例概述

mapbox 在线影像、高程、矢量加载案例;

2) 编辑测试

案例提供的路径不可用,修改 mapbox_satellite、mapbox_terrain、mapbox_streets 的路径,替换路径的后半部分:

=pk.eyJ1IjoiamFzb25iZXZlcmFnZSIsImEiOiJjaXV6dXViY2QwMDBxMm9wNnBpbDdreHU0 In0.KcSEgP5z_w0mIWDYon29ng

替换为:

=pk.eyJ1ljoid2FuZ3MyNzE4liwiYSI6lkliNFlxVnMifQ.neE8x-q88vUI78m_IU0l4w

3) 注

矢量层 mapbox_streets, 配置了道路、建筑、植被、水系等样式, 这是北京故宫显示效果。(需要等待, 本案例在线矢量加载比较慢)

66. mask.earth

1) 案例概述

遮罩层,即地面切开案例。

2) 编辑测试

点击左侧场景栏"mask"层,在右侧属性栏,右键单击"几何体"项,选择"编辑"菜单,在编辑窗口可以修改几何体的数据。

3) 添加遮罩层

添加数据菜单,打开"添加遮罩层"工具,点击地面,绘制一个切开区,确定,完成地 面切开。

67. mb_tiles.earth

1) 案例概述

mbtiles 切片数据库读取案例。

2) 什么是 Mbtiles

MBTiles 是由 MAPBOX 公司所主持的一个开源标准,将瓦片地图标准化,高效化。是由 SQLite 数据库定义的地图瓦片存储标准,对地图投影、瓦片行列及层级,有标准化定义,成 为一个标准的瓦片数据存储格式。通过数据库索引的方式提高瓦片索引的效率。用单个文件, 可以减少成千上万瓦片(可以是高程、影像、矢量)文件的管理难度。

3) 编辑测试

案例配置的 world_countries.mbtiles 文件不存在。

修改为 cache_google/image.db 即可, cache_google/image.db 是 SXEarth 缓存的谷歌地球 影像数据,这里.db 格式等同于.mbtiles。

4) 技巧

图像数据的 mbtiles 文件,拖拽到界面,可以直接加载实现。矢量和高程 mbtiles 文件, 需要通过"添加数据"菜单,通过"添加矢量"和"添加高程"加载。

68. mercator_to_plate_carre.earth

1) 案例概述

墨卡托投影转经纬度坐标系案例。

2) 编辑测试

场景投影为plate-carre 经纬度坐标系,加载了墨卡托投影的 OpenStreets 在线地图数据。

69. mgrs_graticule.earth

1) 案例概述

mgrs 网格案例。

2) 编辑测试

70. min_max_level.earth

1) 案例概述

图像层配置最大显示层级,最小显示层级案例。

2) 编辑测试

影像逐层加载,可以通过图层属性控制最小和最大的加载层级。左侧"场景"栏,选中 "readymap_imagery"层,属性可以看到"最小层级"为6,也就是说,当场景放大,需要 加载第6层数据时,才会加载 readymap_imagery影像。同样,选中"world-tiff"层,属性栏 "最大层级"为5,也就是说,超出5层, "world-tiff"图层不再显示。

如何判断当前加载的图像是第几层?

添加调试图层: 在"添加数据"菜单,点击"添加图像",在弹出的"添加图像"对话 框中,"驱动"选择"debug",确定,实现调试层添加,调试图像层会显示每个瓦片的层 级及行列号。

osgEarth 编辑器 SXEarth www.sxsim.com

71. min_max_range.earth

1) 案例概述

图层显示范围案例。

和上一案例类似,图层的显示范围指的是图像像素距离相机的距离。

2) 编辑测试

显示范围: 在左侧"场景面板", 选中"readymap_imagery"图层, 右侧"属性面板", 其中"最大范围", 和"最小范围"为该图层的显示范围, 进入该范围, 显示该图层。

图像切变:右键按住地球,向下拖拽,地球放大,地球窗口底部中间的"视角海拔距离"显示相机的海拔高度,该值逐渐接近"readymap_imagery"图层的最大显示范围,图像逐渐显示。

切入和切出平滑程度,取决于"衰减-距离"值,如何配置"衰减-距离"?

3) 配置"衰减距离"

在左侧"场景面板",选中"场景"项,在右侧"属性面板","衰减-距离"值为 6000000.0, 修改该数值为 0.0,保存场景"Ctrl+s",场景重启(修改场景属性,保存项目,系统需 要重启场景实现刷新),启动后,右键按住地球,向下拖拽,地球放大显示,可以看到 图像消失的边缘,比较生硬,如下图。

72. min_max_range_rex.earth

1) 案例概述

Rex 地形引擎,图层显示范围案例。

2) 编辑测试

参考 min_max_range.earth 案例。

73. min_max_resolutions.earth

1) 案例概述

图层的最小最大分辨率案例。

图像层,不同层级对应不同分辨率,在配置分辨率范围内的层级显示

2) 问题

案例配置的 mapquest 路径已经失效。

3) 编辑测试

通过"在线地图"菜单,添加其他在线数据,然后选中图层,在属性面板的第一行,右 键单击,在弹出的菜单中选择添加"最小分辨率"和"最大分辨率"。例如:添加谷歌地球 和百度地图图层,配置百度地图的最大分辨率为1500.0,放大地球,百度地图切出显示如下 图,那么分辨率如何计算?

4) 计算分辨率

在"添加数据"菜单,点击"添加图像"按钮,在弹出的"添加图像"对话框,选择"驱动"为"debug",点确定,添加调试图层,调试图层包含图层层级、瓦片半径、行列号信息。可以通过层级计算对应图层的像素分辨率。

"debug"图层的 r=414034m 5/50/10 四个数值分别代表: 瓦片半径、层级、行号、列号。

通过层级计算分辨率:一个经纬度对应 111120m, osgEarth 地心坐标系,第 0 层,是 1 行*2 列个瓦片,每个瓦片 256 像素,可以得到第 0 层分辨率为 111120m*180 度/256 像素 =78131.25, 78131.25/2^5 得到第五层的分辨率为 2441.6015625m,第六层精度为 1220.80078125。

可见第六层已经超出该图层的"最大分辨率"属性,不再显示。如下图。

74. multiple_heightfields.earth

1) 案例概述

多个高程数据层集成案例。

本案例使用一个图层加载一个高程文件,gdal_multiple_files.earth 案例使用单个图层,加载多个高程文件,结果相同。

2) 编辑测试

案例中添加了"高程着色图"扩展,关闭图像层,可以看到高程着色效果。

在左侧的"场景面板",关闭"world-tiff"图像层,双击"mt_rainier"高程层,相机飞 到该图层数据区,效果如下图。

75. night.earth

- 1) 案例概述
- 2) 编辑测试

76. nodata.earth

1) 案例概述

图像的无数据像素,透明显示案例。

2) 编辑测试

案例添加了 nodata.tif 图像层,用 Gloable Mapper 打开后,查看元数据,含有 GDAL_NO_DATA_VALUE0(注:GDAL可以配置无数据属性)。案例用"GDAL"驱动加载无数 据图像时,会自动将无数据像素透明。

et	adata	Projection				
-	Attr	ibute Name	Attribute Value			*
1	R COR	NER LATITUDE	0° 00' 00.0000″ N			
L	L CORI	NER LONGITUDE	10° 00' 00.0000″ E			
1	L COR	NER LATITUDE	0° 00' 00.0000" N Geographic (Latitude/Longi WGS84 arc degrees EPS0:4326 1234461 sq km			
	PI	ROJ_DESC				ngi
	PR	OJ_DATUM				_
	PR	OJ_UNITS				
	EI	PSG_CODE				
	COV	ERED AREA				=
	GDAL_N	O_DATA_VALUE	0			
	NUI	A COLUMNS	256			1
	N	UM ROWS	256			
	NU	JM BANDS	4			
	COL	LOR BANDS	0,1,2			
	PI	KEL WIDTH	0.03906	arc	degrees	
	PIX	EL HEIGHT	0.03906	arc	degrees	*
1		111				

显示效果

3) 其他方法1

图像层,"透明-颜色"属性,选中图像,在属性第一行,右键,选择"透明-颜色"属性。例如透明白色:"透明-颜色"值应该为 255 255 255 255

4) 其他方法 2

图像层,"色度抠像"属性,在色彩调整组里,可以看到"色度抠像"属性,rgb 配置 需要透明的颜色,"强度"为透明的强度,与指定颜色相似的颜色也会透明。 实例:用 PhotoShop 或其他图像处理工具的拾色器,拾取需要透明的像素颜色(关闭大气, 然后屏幕截图,拾取颜色),这里我们拾取了较深的绿色区,r=39,g=68,b=1,换算为0-1表示,每个数值除以255,r=0.15294,g=0.26667,b=0.0039,配置 world-tiff 图层的"色度抠像"属性,强度值取0.01和取0.03,效果如下(world-tiff 图层后面没有其他图像层,透明区显示为星空背景黑色。)。

77. noise.earth

1) 案例概述

地形着色器代码实现地面杂色混合效果。

2) 编辑测试

在场景栏,删除"高程着色图"扩展,去除地面彩色。选中场景面板的"地形着色器" 项,在右侧属性栏,右键"代码"项,在打开的编辑窗口,可以编辑 GLSL 代码。在 vec2 coords = getNoiseCoords(floor(baseLOD)); 后面,添加 coords = 2.0*coords; 可以调节杂色的密度。

78. normalmap.earth

1) 案例概述

法线贴图光照效果。

2) 编辑测试

在左侧"场景面板",选中"场景"项,在右侧属性面板,"法线贴图"项为选中状态, 开启和关闭"场景"项的"法线贴图"属性,效果对比如下图。

79. ocean.earth

1) 案例概述

海洋案例。配置了 osgEarth 自带的简单海洋插件。

80. ocean_no_elevation.earth

1) 案例概述

海洋显示案例,配置了 osgEarth 自带的简单海洋插件。

81. openstreetmap.earth

OpenStreet 地图案例。

2) 编辑测试

82. openstreetmap_buildings.earth

1) 案例概述

OpenStreet 地图和矢量建筑案例。

2) 编辑测试

83. openstreetmap_flat.earth

1) 案例概述

投影坐标系下, OpenStreet 地图显示案例。

84. openstreetmap_full.earth

1) 案例概述

OpenStreet 多要素矢量层,地面实体模型生成案例。

2) 编辑测试

在左侧位置列表,双击"Chicago"位置,相机飞行到芝加哥市上空,在"天气环境"菜单,修改仿真时间的"小时"项,为4时,如下图。

可以参照 "feature_population_cylinders.earth" 案例,将地面图标显示在建筑上方。

osgEarth 编辑器 SXEarth www.sxsim.com

85. openweathermap_clouds.earth

1) 案例概述

在线气象云图显示案例。

2) 编辑测试

可能是路径失效,目前无法显示。

86. openweathermap_precipitation.earth

1) 案例概述

可能是路径失效,目前无法显示。

87. openweathermap_pressure.earth

1) 案例概述

可能是路径失效,目前无法显示。

88. photosphere1.earth

1) 案例概述

<complex-block><complex-block>

89. photosphere2.earth

1) 案例概述

全景图显示案例 2。

90. readymap.earth

1) 案例概述

readymap 在线影像和高程案例。

91. readymap_flat.earth

1) 案例概述

使用投影坐标系统,显示 readymap 影像案例。

2) 编辑测试

在左侧"场景面板",选中"场景"项,在右侧"属性面板",可见投影类型为"plate-carre"。

2) 添加场景属性

在左侧"场景面板",选中"场景"项,在右侧"属性面板",右键单击第一行,在弹 出的菜单中,可以选择"关照"、"高程内插"等,打"√"表示已经添加到场景属性。右 键单击"地形"属性,可以添加"地形缩放"、"颜色"、"驱动"、"切片大小"等属性。 修改场景属性,保存后,场景会自动重启刷新显示。

92. readymap_include.earth

- 1) 案例概述
- 2) 编辑测试

93. readymap_template.earth

- 1) 案例概述
- 2) 编辑测试

94. readymap-elevation-only.earth

- 1) 案例概述
- 2) 编辑测试

95. readymap-osm.earth

- 1) 案例概述
- 2) 编辑测试

96. readymap-priority.earth

- 1) 案例概述
- 2) 编辑测试

97. readymap-rex.earth

1) 案例概述

Rex 地形驱动案例,以 readymap 高程和影像为底图。

2) 编辑测试

在左侧"场景面板"选择"场景"项,在右侧"属性面板","法线贴图"启用了,双击"位置列表"的"San Francisco, California"项,视点飞到美国旧金山,加利福尼亚,在 "天气环境"菜单,修改"日期/时间"的"仿真时间",修改为1时,效果如下图。

3) 关闭法线贴图

在左侧"场景面板"选择"场景"项,在右侧"属性面板",关闭"法线贴图"选项,

保存项目"Ctrl+s",系统重启场景(修改场景项的属性,需要保存项目,系统会自动重 启场景),双击"位置列表"的"San Francisco, California"项,效果如下图。

98. roads.earth

- 1) 案例概述
- 2) 编辑测试

99. roads-flattened.earth

- 1) 案例概述
- 2) 编辑测试

100. roads-test.earth

- 1) 案例概述
- 2) 编辑测试

101. scene_clamping.earth

1) 案例概述

矢量线与地面的多种关系案例。

这个案例主要示例矢量标记与地面的位置关系。

2) 矢量标记与地形位置关系

矢量标记与地形确立位置关系,主要与四个属性有关,分别是"高度-贴合"、"高度-技术"、"高度-绑定"、"高度-位移"。

高度-贴合:标记与地面贴合关系,分为"none"无、"terrain"贴地、"absolute"绝 对高度、"relative"相对高度。

高度-技术:何时何地实现贴合。分为"map"高程 map(不建议使用)、"scene"场 景模型、"gpu"GPU 渲染地形、"drape"投影纹理

高度-绑定:分为按照中心点绑定和按照每个顶点绑定。

高度-位移:高度位移值。

3) 编辑测试

在左侧场景面板,选中"标记列表"的"Feature clamped relative to ground"项,修改 "高度-位移"值为1500,黄色线条高度变高。右键单击"高度-位移",在弹出的菜单选择 "删除",线条贴地显示。

4) 提示

"高度-贴合"还有几个组合选项,实际是与"高程-技术"的结合,包括"relative-gpu"、"terrain-drape"、"terrain-gpu"、"terrain-scene"和"relative-scene",配置了组合选项,不需要配置"高度-技术"。推荐使用组合选项。

"高度-贴合"与"高程-技术"不是每种组合都可用, osgEarth 对"高度-技术"为"map" 支持不是很好,不推荐使用。

102. silverlining.earth

- 1) 案例概述
- 2) 编辑测试

103. simple_model.earth

1) 案例概述

三维模型文件加载案例。

- 2) 编辑测试
 - a) 关闭光照: 在"大气环境"菜单,关闭"大气"选项。
 - b) 查看加载的模型: 在左侧"场景面板", 双击"位置列表"的"Zoom to model" 项。
 - c) 添加谷歌地球影像:在场景面板,右键单击"readymap_imagery"图像层,在 弹出的菜单,选择"删除"项。在"在线地图"菜单,点击"谷歌地球影像(无 位移)"添加谷歌地球影像到图像层。
 - d) 替换模型:在左侧"场景面板",选中"模型列表"的"模型"项,在右侧"属性栏", "路径"为"../data/red_flag.osg.100,100,100.scale"(模型路径的".100,100,100.scale",用于模型缩放),路径修改为../data/tank.FLT,修改"缩放 X"、"缩放 Y"和"缩放 Z"为 10.0,双击"模型列表"的"模型"项,定位到模型所在位置,效果如图。

e) 添加模型:在"添加数据"菜单,点击"添加模型"工具,弹出添加模型对话 框,"模型路径"设置为"models",选中"模型列表"的"tree.ive"(按住

Ctrl 键,可实现多选),选中右侧的"随机大小"和"随机旋转"选项,点击 地面,每点击一次地面,添加一个模型,如图。

104. skyview1.earth

1) 案例概述

全景图案例1。

使用了 skyview 驱动插件,相比 osg 驱动读取图像层,实现了图像的水平翻转,用于从 地球内部查看,实现全景图效果。

2) 编辑测试

注意: SXEarth 在打开具有 skyview 图层的 earth 文件时,相机会自动切换为从球体内部 浏览。

105. skyview2.earth

1) 案例概述

全景图案例 2。

替换了天空图像。

2) 编辑测试

全屏浏览:在"窗口"菜单,点"全屏"(快捷键 Ctrl+f)。

退出全屏:快捷键"Esc"。

简化窗口:在"窗口"菜单,点击"场景面板"关闭左侧面板。点击"属性面板",关闭右侧面板。在窗口的右上角,点击"选项"旁边向上的箭头,关闭工具栏。效果如图:

106. splat.earth

- 1) 案例概述
- 2) 编辑测试

107. splat-blended-with-imagery.earth

- 1) 案例概述
- 2) 编辑测试

108. splat-with-mask-layer.earth

- 1) 案例概述
- 2) 编辑测试

109. splat-with-multiple-zones.earth

- 1) 案例概述
- 2) 编辑测试

110. splat-with-rasterized-land-cover.earth

- 1) 案例概述
- 2) 编辑测试

111. stamen_toner.earth

- 1) 案例概述
- 2) 编辑测试

112. stamen_watercolor.earth

- 1) 案例概述
- 2) 编辑测试

113. state_plane.earth

- 1) 案例概述
- 2) 编辑测试

114.tess_screen_space.earth

- 1) 案例概述
- 2) 编辑测试

115. tess-coastlines.earth

1) 案例概述

2) 编辑测试

116. tess-terrain.earth

- 1) 案例概述
- 2) 编辑测试

117. triton.earth

- 1) 案例概述
- 2) 编辑测试

118. triton_drop_shader.earth

- 1) 案例概述
- 2) 编辑测试

119. utm.earth

- 1) 案例概述
- 2) 编辑测试

120. utm_graticule.earth

- 1) 案例概述
- 2) 编辑测试

121. vertical_datum.earth

- 1) 案例概述
- 2) 编辑测试

122.wms_nexrad.earth

- 1) 案例概述
- 2) 编辑测试

123.wms-t_nexrad_animated.earth

- 1) 案例概述
- 2) 编辑测试

124.问题反馈与编辑器公众号

- 1) 由于作者水平有限,欢迎读者反馈意见,邮箱如下
 - i. <u>sxsim@sxsim.com</u>
 - ii. <u>674200401@qq.com</u>
- 2) 欢迎加入 SXEarth 官方微信公众号, 了解 SXEarth 最新资讯。

